NanoMill® TEM Specimen Preparation System – Model 1040

The NanoMill system uses an ultra-low energy, concentrated ion beam to produce the highest quality specimens for transmission electron microscopy.

For many of today’s advanced materials, transmission electron microscopy (TEM) is the best technique for gathering valuable information about microstructure and properties.

Because features in nanotechnology research and semiconductor device specimens continue to decrease in size, it is essential that specimens be both very thin and free of preparation- induced artifacts. These requirements are even more important when using TEMs with aberration correction and monochromated electron sources where resolution is sub-Ångström.
NanoMill® TEM Specimen Preparation System - Model 1040 (135 téléchargements)

  • Ultra-low-energy, inert-gas ion source
  • Concentrated ion beam with scanning capabilities
  • Removes damaged layers without redeposition
  • Ideal for post-focused ion beam processing
  • Enhances the results from conventionally prepared specimens
  • Room temperature to cryogenically cooled NanoMilling SM process
  • Rapid specimen exchange for high- throughput applications
  • Computer-controlled, fully programmable, and easy to use
  • Contamination-free, dry vacuum system

PLASMA CLEANING

Following the NanoMillingSM process, Fischione highly recommends that you plasma clean the specimen and specimen holder.

During fine-probe microanalysis, organic contamination may build up on the specimen. A 10 seconds to 2 minutes cleaning time in the Fischione Model 1020 Plasma Cleaner or Model 1070 NanoClean removes the contamination without altering the specimen’s structure or composition. Longer cleaning times can remove contamination spots caused by previous TEM viewing of specimens that were not plasma cleaned.

Create thin specimens for TEM

Fischione’s Model 1040 NanoMill® TEM specimen preparation system is an excellent tool for preparing the ultra-thin, high-quality specimens needed for transmission electron microscopy (TEM) imaging and analysis.
The variable energy ion source generates ion energies as low as 50 eV. In addition, the beam size is as small as 1 μm, enabling removal of amorphization, implantation, or redeposition from targeted areas.
An ideal application for the NanoMill systemis post-focused ion beam (FIB) processing. Although the FIB is highly effective in preparing TEM specimens, its liquid metal (Ga) ion source often results in amorphization and Ga implantation. These damaged layers can be as much as 10 to 30 nm thick. The NanoMill system is ideally suited to removing these layers.

Targeted, ultra-low-energy milling

The NanoMill system’s ion source features a filament-based ionization chamber and electrostatic lenses. This source was specifically developed to produce ultra-low ion energies and a small beam diameter. The source uses an inert gas, argon, and has an operating voltage range of 50 eV to 2 kV at variable working distances. The source yields sufficient current density to remove specimen damage within a reasonable time. The NanoMilling process can be accomplished in as little as 20 minutes.
Because the ion beam can be focused into a 1 μm diameter spot, redeposition of sputtered material onto the area of interest is avoided. Beam current and spot size are adjusted by using different sized TEM-type apertures.
The feedback control algorithm for the ion source automatically produces stable and repeatable ion beam conditions over a wide variety of milling parameters.
The beam can be either targeted at a specific point or scanned over the specimen’s surface. This is particularly important when targeting a specific area for selective milling or directing the ion beam to a FIB lamella positioned on a support grid.
Ion source parameters are easy to program; simply enter the emission current and accelerating voltage. In addition, it is easy to establish the specimen position. Once you enter the operating parameters, the computer controls the instrument functions.
In the imaging mode, select the scan speed, magnification, focus, brightness, and contrast. With a 3 mm field of view, the entire surface of a grid or specimen can be imaged, making it extremely easy to mill the area of interest. This is useful when targeting a FIB lamella.

SED specimen targeting

During operation, it is essential to know the position of the ion beam in relation to the specimen. This is of particular importance for post-FIB processing in which the FIB lamella, mounted onto a support grid, can be as small as 10 μm2.
Targeting directs the beam to a specific area of interest. An Everhart-Thornley secondary electron detector (SED) is used to image the ion- induced secondary electrons generated from the targeted area. The SED output is processed by the NanoMill system’s imaging electronics to provide a real-time view of the specimen, implicitly aligned with the ion beam. You can select the scan speed – either faster imaging or enhanced image quality. Frame averaging is employed to reduce noise.
The SED image is displayed on the Main tab. In point mode, place the cursor on the specimen
to focus the ion beam to that point. If you need to thin a larger area, select the area and the ion beam will scan within it. The position and the dimensions of the scan box are displayed (in microns).

Computer control

The NanoMill system operates with minimal user intervention. Milling conditions, such as ion source parameters, milling angle, specimen position, temperature threshold, and processing time, are programmed via a single window. The system software allows you to :

  • Store and reuse milling sequences (recipes), which leads to highly reproducible results
  • Control access to the various instrument controls and maintenance functionality through the assignment of user privileges
  • Use shortcut keys to speed programming and operation
  • Review system operation through the Data and Error Logs

Typical processing sequence

For effective specimen preparation, a series of operational sequences can be established. Typical methodology starts with rapid milling at higher ion energies. As the specimen thins, the ion energy is reduced, resulting in a lower milling rate that eliminates artifacts. User-determined ion beam targeting at each step of the operation ensures that the proper area of the specimen is processed.

Automatic gas control

Gas is regulated automatically using precision mass flow control technology. An integral particulate filter ensures that high-purity gas is delivered to the ion source. This reduces specimen contamination and allows the NanoMill system to operate for longer cumulative periods before maintenance is required. The ion source uses low flow resulting in minimal gas consumption.

Contamination-free, fully integrated dry vacuum system

The fully integrated vacuum system includes a turbomolecular drag pump backed by a multistage diaphragm pump. This oil-free system assures a clean environment for specimen processing.
The operating system vacuum is 1 x 10-4 mbar and the base vacuum is 3 x 10-7 mbar. The chamber vacuum level is measured with a combination cold cathode and Pirani gauge. Vacuum status is displayed on the Main tab and the vacuum level is displayed on the Maintenance tab.

Specimen mounting

To prevent specimen shadowing, a unique specimen holder provides unobstructed ion trajectories to the specimen, even at 0°. This is particularly important when the ion beam is targeted at the leading edge of a FIB-prepared specimen.
The specimen is mechanically affixed to the specimen holder, thus eliminating the possibility of contamination from an adhesive. A separate loading station (included) provides a platform for the specimen that eases holder positioning.

Automatic load lock for quick specimen transfer

The NanoMill system features a load lock for rapid specimen exchange. The specimen holder is connected to the end of a conventional transfer rod. After the load lock door is closed and the load lock is evacuated, an automatic gate valve opens and the specimen holder is manually inserted into the specimen stage using the transfer rod.
You can observe the specimen holder through
a viewing window during transfer to and from the specimen stage. A chamber light facilitates the transfer process. Once closed, the gate valve prevents light from entering the chamber and affecting the SED signal. After the load lock is vented, the specimen can be rapidly transferred to the TEM, thus reducing specimen contamination from ambient conditions.

Specifications

Ion source Filament-based ion source combined with electrostatic lens system
Variable voltage (50 eV to 2 kV), continuously adjustable
Beam current density up to 1 mA/cm2
Beam diameter as small as 1 μm at 2,000 eV
Faraday cup for ion beam current monitoring with a range of 1 to 2,000 pA
Field-replaceable apertures
Specimen stage Load lock allows specimen exchange in less than 10 seconds Transfer rod for specimen exchange
Milling angle range of −12 to +30°
Vacuum system Turbomolecular drag pump backed by an oil-free diaphragm pump
Chamber vacuum measurement with a combination cold cathode and Pirani gauge with a range of atmosphere to 1 x 10-8 mbar
System base vacuum of 3 x 10-7 mbar Operating vacuum of 1 x 10-4 mbar
Gas Automated using mass flow control technology
Flow rate up to 2 sccm
Integral particulate filter
Inert gas (argon) with recommended purity of 99.999%
Specimen targeting Ion beam capable of being targeted at one spot on the specimen surface or scanned within a selected area
User interface Menu-driven interface
Programmable milling cycles with system status displayed
Chamber illumination User-controlled chamber illumination to facilitate specimen exchange
Specimen cooling Liquid nitrogen conductive cooling with automatic temperature interlocks
Stage temperature to –170 °C
System cool-down time less than 20 minutes
Specimen cool-down time less than 5 minutes
Dewar hold time up to 6 hours
Integral load lock heater ensures rapid specimen warming times to ambient temperature
Automatic termination Process termination by time or temperature
Imaging SED-based imaging technology
3 mm field of view
Everhart-Thornley detector
Specimen image displayed on graphical user interface
Dimensions 39 in (991 mm) width x 58 in (1,474 mm) height x 31 in (788 mm) depth
Weight 507 lb (230.5 kg)
Power 110/220 V AC, 50/60 Hz, 1,000 W
Warranty One year
Service contract Available upon request