Alemnis – Système de nano-indentation à haute précision

Le nano-indenteur Alemnis est un système compact et flexible conçu pour les expériences de tests nano-mécaniques pour une large variété de matériaux et pour différents types d’applications. Ce système peut s’intégrer facilement dans divers équipements d’imagerie. Son mode unique de contrôle du déplacement précis et fiable a été conçu spécifiquement pour les tests à haute fréquence et les tests à très haute température. Cette platine d’indentation In-Situ possède le meilleur ratio prix/performance du marché.

Mode de « déplacement imposé »

Le système permet un mode d’opération unique en déplacement contrôlé. Ce mode de déplacement imposé permet les sauts de vitesses de déformation, la relaxation de contrainte et les tests de fracture. L’utilisateur peut définir les profils d’indentation voulus (contrôle de la force ou contrôle réel du déplacement).

Utilisation à l’ambiante ou In-Situ dans le MEB

Le système Alemnis peut être utilisé comme un indenteur autonome fonctionnant sous microscopie optique à l’ambiante et également In-Situ dans un MEB. Il est aussi compatible avec les expériences d’analyse cristallographique EBSD HR, la spectrographie micro-Raman, les expériences sous faisceaux X Synchrotron et avec bien d’autres techniques (AFM, etc.)

Compact et flexible

Le module de nano-indentation est compact (16 x 6.5 x 4.6 cm) et peut s’intégrer facilement dans la majorité des instruments de test et d’imagerie. C’est l’instrument le plus flexible du le marché.

Exactitude et précision

La gamme de force accessible avec ce système est de 0.5N à 2.5N et le positionnement de la pointe d’indentation est extrêmement précis. L’alignement pointe-échantillon a une résolution de 1 nm. Le système présente une très bonne stabilité mécanique (dérive thermique inférieure à 5nm/min) et est donc adapté à des expériences de longue durée.

Conception modulaire et opérations simplifiées

La mise en place du système est très courte et permet de gagner du temps d’expérience dans vos différents montages expérimentaux (In-Situ, à l’ambiante, etc.). La conception modulaire est adaptée aux expériences à haute fréquence ou aux mesures à haute température.

Logiciel personnalisable (AMICS)

Le nano-indenteur est livré avec un logiciel de contrôle personnalisable permettant une flexibilité maximum pour les paramètres de test et la mise en place de vos protocoles.

Logiciel d’analyse (AMMDA)

Ce logiciel permet à l’utilisateur de faire des corrections et traitements de données sur les mesures fournies par le logiciel AMICS.

Prix compétitif

Le ratio prix/performance est le plus attractif du marché.

Module ultra-haute vitesse de déformation

Le module ultra-haute vitesse de déformation, unique et breveté, permet un contrôle des vitesses de déformation jusqu’à 3 000 s-1 et même 20 000 s-1 sous certaines conditions.

Module haute température

Le module haute température permet de contrôler les expériences jusqu’à 1000°C. Les températures de l’échantillon et de la pointe d’indentation sont contrôlées séparément et régulées pour coïncider parfaitement et ainsi éviter les dérives thermiques (dérive thermique <10 nm/min à 800°C). Sa conception modulaire et robuste permet de d’interchanger les modules de chauffages et les pointes d’indentation facilement. Tous les types de pointes et les différents matériaux compatibles haute température sont disponibles.

Liste de référence

  • University of Cambridge
  • University of Oxford
  • Imperial College London (ICL)
  • Deutsches Elektronen-Synchrotron (DESY), Hamburg
  • Ecole des Mines de Saint-Etienne
  • LTDS Lyon/Ecully
  • Institut PPrime Poitiers
  • Mines Paris Tech CEMEF, Sophia Antipolis
  • Swiss Federal Institute of Technology (ETHZ)
  • University of California, Irvine
  • Paul Scherrer Institute (PSI)
  • NIMS, Japan

2019

H.H. Ding, V. Fridrici, G. Guillonneau, S. Sao-Joao, J. Geringer, J. Fontaine, P. Kapsa, Investigation on mechanical properties of tribolm formed on Ti–6Al–4V surface sliding against a DLC coating by nano-indentation and micro-pillar compression techniques, Wear 432–433 (2019) 202954.

  1. S. Iyera, G. Mohanty, K. Stillera, J. Michler, M. Colliander, Microscale fracture of chromia scales, Materialia Vol. 8 (2019) 100465 doi.org/10.1016/j.mtla.2019.100465.

 

2018

  1. Guillonneau, M. Mieszala, J. Wehrs, J. Schwiedrzik, S. Grop, D. Frey, L. Philippe, J-M. Breguet, J. Michler, J. M. Wheeler, Nanomechanical testing at high strain rates: new instrumentation for nanoindentation and microcompression, Materials and Design 148 (2018) 39-48.

Best JP, Guillonneau G, Grop S, Taylor AA, Frey D, Longchamp Q, et al. High temperature impact testing of a thin hard coating using a novel high-frequency in situ micromechanical device. Surface and Coatings Technology 2018; 178-186.

Ast, J., et al., Interplay of stresses, plasticity at crack tips and small sample dimensions revealed by in-situ microcantilever tests in tungsten. Materials Science and Engineering: A, 2018. 710: p. 400-412.

Ast, J., et al., The brittle-ductile transition of tungsten single crystals at the micro-scale. Materials & Design, 2018. 152: p. 168-180.

Best, J.P., et al., High temperature impact testing of a thin hard coating using a novel high-frequency in situ micromechanical device. Surface and Coatings Technology, 2018. 333: p. 178-186.

Best, J.P., et al., Ni-nanocluster composites for enhanced impact resistance of multilayered arc-PVD ceramic coatings. Surface and Coatings Technology, 2018.

Bhowmik, A., et al., Deformation behaviour of [001] oriented MgO using combined in-situ nano-indentation and micro-Laue diffraction. Acta Materialia, 2018. 145: p. 516-531.

Choleridis, A., et al., Experimental study of wear-induced delamination for DLC coated automotive components. Surface and Coatings Technology, 2018. 352: p. 549-560.

de Jager, B., et al. On the Microstructure Size Effect in SLS-built 316L Stainless Steel Parts. in Proceedings of the World Congress on Engineering. 2018.

Edwards, T.E.J., et al., Longitudinal twinning in a TiAl alloy at high temperature by in situ microcompression. Acta Materialia, 2018. 148: p. 202-215.

Fanicchia, F., et al., Residual stress and adhesion of thermal spray coatings: Microscopic view by solidification and crystallisation analysis in the epitaxial CoNiCrAlY single splat. Materials & Design, 2018. 153: p. 36-46.

Ferrand, H.L., F. Bouville, and A.R. Studart, Processing of dense bio-inspired ceramics with deliberate microtexture. arXiv preprint arXiv:1807.04378, 2018.

Jones, R., et al., Reduced partitioning of plastic strain for strong and yet ductile precipitate-strengthened alloys. Scientific reports, 2018. 8(1): p. 8698.

Knowles, A.J., et al., Data on a new beta titanium alloy system reinforced with superlattice intermetallic precipitates. Data in brief, 2018. 17: p. 863-869.

Lauener, C., et al., Fracture of Silicon: Influence of rate, positioning accuracy, FIB machining, and elevated temperatures on toughness measured by pillar indentation splitting. Materials & Design, 2018. 142: p. 340-349.

Liao, Z., et al., On the influence of gamma prime upon machining of advanced nickel based superalloy. CIRP Annals, 2018.

Major, L., et al., Ex situ and in situ nanoscale wear mechanisms characterization of Zr/ZrxN tribological coatings. Wear, 2018. 404: p. 82-91.

Schroer, A., J.M. Wheeler, and R. Schwaiger, Deformation behavior and energy absorption capability of polymer and ceramic-polymer composite microlattices under cyclic loading. Journal of Materials Research, 2018. 33(3): p. 274-289.

Schwiedrzik, J., et al., A new pushpull sample design for microscale mode 1 fracture toughness measurements under uniaxial tension. Fatigue & Fracture of Engineering Materials & Structures, 2018. 41(5): p. 991-1001.

Tong, X., et al., Structural evolution in a metallic glass pillar upon compression. Materials Science and Engineering: A, 2018. 721: p. 8-13.

 

2017

Wehrs J, Deckarm MJ, Wheeler JM, Maeder X, Birringer R, Mischler S, et al. Elevated temperature, micro-compression transient plasticity tests on nanocrystalline Palladium-Gold: Probing activation parameters at the lower limit of crystallinity. Acta Materialia 2017.

Ast J, Polyakov M, Mohanty G, Michler J, Maeder X. Interplay of stresses, plasticity at crack tips and small sample dimensions revealed by in-situ microcantilever tests in tungsten. Ma-terials Science and Engineering: A 2017.

Ast J, Mohanty G, Guo Y, Michler J, Maeder X. In situ micromechanical testing of tungsten micro-cantilevers using HR-EBSD for the assessment of deformation evolution. Materials & Design 2017;117:265-6.

Best JP, Wehrs J, Maeder X, Zechner J, Wheeler JM, Schär T, et al. Reversible, high temperature softening of plasma-nitrided hot-working steel studied using in situ micro-pillar compression. Materials Science and Engineering: A 2017;680:433-6.

Viat A, Guillonneau G, Fouvry S, Kermouche G, Sao Joao S, Wehrs J, et al. Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures. Wear 2017;392:60-8.

Schwiedrzik J, Ast J, Pethö L, Maeder X, Michler J. A new pushpull sample design for microscale mode 1 fracture toughness measurements under uniaxial tension. Fatigue & Fracture of Engineering Materials & Structures 2017.

Schwiedrzik J, Taylor A, Casari D, Wolfram U, Zysset P, Michler J. Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta Biomaterialia 2017;60:302-14.

Ast, J., et al., In situ micromechanical testing of tungsten micro-cantilevers using HR-EBSD for the assessment of deformation evolution. Materials & Design, 2017. 117: p. 265-266.

Best, J.P., et al., Reversible, high temperature softening of plasma-nitrided hot-working steel studied using in situ micro-pillar compression. Materials Science and Engineering: A, 2017. 680: p. 433-436.

Feilden, E., et al., Micromechanical strength of individual Al2O3 platelets. Scripta Materialia, 2017. 131: p. 55-58.

Hasegawa, M., et al., Electrodeposition of dilute Ni-W alloy with enhanced thermal stability: Accessing nanotwinned to nanocrystalline microstructures. Materials Today Communications, 2017. 12: p. 63-71.

Keller, L.M., et al., Understanding anisotropic mechanical properties of shales at different length scales: In situ micropillar compression combined with finite element calculations. Journal of Geophysical Research: Solid Earth, 2017. 122(8): p. 5945-5955.

Knowles, A.J., et al., A new beta titanium alloy system reinforced with superlattice intermetallic precipitates. Scripta Materialia, 2017. 140: p. 71-75.

Mastorakos, I.N., et al., The effect of size and composition on the strength and hardening of Cu–Ni/Nb nanoscale metallic composites. Journal of Materials Research, 2017. 32(13): p. 2542-2550.

Mieszala, M., et al., Micromechanics of amorphous metal/polymer hybrid structures with 3D cellular architectures: Size effects, buckling behavior, and energy absorption capability. Small, 2017. 13(8): p. 1602514.

Mieszala, M., et al., Erosion mechanisms during abrasive waterjet machining: Model microstructures and single particle experiments. Journal of Materials Processing Technology, 2017. 247: p. 92-102.

Schwiedrzik, J., et al., Nanoscale deformation mechanisms and yield properties of hydrated bone extracellular matrix. Acta biomaterialia, 2017. 60: p. 302-314.

Sernicola, G., et al., In situ stable crack growth at the micron scale. Nature communications, 2017. 8(1): p. 108.

Viat, A., et al., Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures. Wear, 2017. 392: p. 60-68.

Wehrs, J., et al., Elevated temperature, micro-compression transient plasticity tests on nanocrystalline Palladium-Gold: probing activation parameters at the lower limit of crystallinity. Acta Materialia, 2017. 129: p. 124-137.

Xiao, Y., et al., Investigation of the deformation behavior of aluminum micropillars produced by focused ion beam machining using Ga and Xe ions. Scripta Materialia, 2017. 127: p. 191-194.

Zou, Y., et al., Nanocrystalline high-entropy alloys: a new paradigm in high-temperature strength and stability. Nano letters, 2017. 17(3): p. 1569-1574.

 

2016

Mohanty G, Wehrs J, Boyce BL, Taylor A, Hasegawa M, Philippe L, et al. Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tension. Journal of Materials Research 2016; 31:1085-95.

Jun T-S, Zhang Z, Sernicola G, Dunne FP, Britton TB. Local strain rate sensitivity of single α phase within a dual-phase Ti alloy. Acta Materialia 2016;107:298-309.

Guo Y, Schwiedrzik J, Michler J, Maeder X. On the nucleation and growth of <1122> twin in commercial purity titanium: In situ investigation of the local stress field and dislocation density distribution. Acta Materialia 2016;120:292-301.

Gamcová J, Mohanty G, Michalik Š, Wehrs J, Bednarčík J, Krywka C, et al. Mapping strain fields induced in Zr-based bulk metallic glasses during in-situ nanoindentation by X-ray nanodiffraction. Applied Physics Letters 2016;108:031907.

Abad OT, Wheeler JM, Michler J, Schneider AS, Arzt E. Temperature-dependent size effects on the strength of Ta and W micropillars. Acta Materialia 2016;103:483-94.

Best JP, Zechner J, Wheeler JM, Schoeppner R, Morstein M, Michler J. Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation. Philosophical Magazine 2016;96:3552-69.

Best JP, Zechner J, Shorubalko I, Oboňa JV, Wehrs J, Morstein M, et al. A comparison of three different notching ions for small-scale fracture toughness measurement. Scripta Materialia 2016;112:71-4.

Jaya BN, Wheeler JM, Wehrs J, Best JP, Soler R, Michler J, et al. Microscale Fracture Behavior of Single Crystal Silicon Beams at Elevated Temperatures. Nano Letters 2016;16:7597-603.

Mieszala M, Hasegawa M, Guillonneau G, Bauer J, Raghavan R, Frantz C, et al. Microme-chanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability. Small 2016.

Schwiedrzik J, Raghavan R, Rüggeberg M, Hansen S, Wehrs J, Adusumalli RB, et al. Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modelling. Philosophical Magazine 2016;96:3461-78.

Abad, O.T., et al., Temperature-dependent size effects on the strength of Ta and W micropillars. Acta Materialia, 2016. 103: p. 483-494.

Best, J.P., et al., Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation. Philosophical Magazine, 2016. 96(32-34): p. 3552-3569.

Chen, M., et al., High-Temperature In situ Deformation of GaAs Micro-pillars: Lithography Versus FIB Machining. JOM, 2016. 68(11): p. 2761-2767.

Edwards, T.E.J., et al., Deformation of lamellar TiAl alloys by longitudinal twinning. Scripta Materialia, 2016. 118: p. 46-50.

Guo, Y., et al., On the nucleation and growth of {112¯ 2} twin in commercial purity titanium: In situ investigation of the local stress field and dislocation density distribution. Acta Materialia, 2016. 120: p. 292-301.

Jaya, B.N., et al., Microscale fracture behavior of single crystal silicon beams at elevated temperatures. Nano letters, 2016. 16(12): p. 7597-7603.

Jun, T.-S., et al., Local deformation mechanisms of two-phase Ti alloy. Materials Science and Engineering: A, 2016. 649: p. 39-47.

Jun, T.-S., et al., Local strain rate sensitivity of single α phase within a dual-phase Ti alloy. Acta Materialia, 2016. 107: p. 298-309.

Kermouche, G., et al., Perfectly plastic flow in silica glass. Acta Materialia, 2016. 114: p. 146-153.

Kolb, M., et al., Local mechanical properties of the (β0+ ω0) composite in multiphase titanium aluminides studied with nanoindentation at room and high temperatures. Materials Science and Engineering: A, 2016. 665: p. 135-140.

Mieszala, M., et al., Orientation-dependent mechanical behaviour of electrodeposited copper with nanoscale twins. Nanoscale, 2016. 8(35): p. 15999-16004.

Mohanty, G., et al., Room temperature stress relaxation in nanocrystalline Ni measured by micropillar compression and miniature tension. Journal of Materials Research, 2016. 31(8): p. 1085-1095.

Tumbajoy-Spinel, D., et al., Assessment of mechanical property gradients after impact-based surface treatment: application to pure α-iron. Materials Science and Engineering: A, 2016. 667: p. 189-198.

Wheeler, J.M., et al., The effect of size on the strength of FCC metals at elevated temperatures: annealed copper. Philosophical Magazine, 2016. 96(32-34): p. 3379-3395.

Wheeler, J.M., et al., The plasticity of indium antimonide: Insights from variable temperature, strain rate jump micro-compression testing. Acta Materialia, 2016. 106: p. 283-289.

Zhang, Z., et al., Determination of Ti-6242 α and β slip properties using micro-pillar test and computational crystal plasticity. Journal of the Mechanics and Physics of Solids, 2016. 95: p. 393-410.

Zou, Y., et al., Bridging room-temperature and high-temperature plasticity in decagonal Al–Ni–Co quasicrystals by micro-thermomechanical testing. Philosophical Magazine, 2016. 96(32-34): p. 3356-3378.

 

2015

Mohanty G, Wheeler JM, Raghavan R, Wehrs J, Hasegawa M, Mischler S, et al. Elevated temperature, strain rate jump microcompression of nanocrystalline nickel. Philosophical Magazine 2015;95:1878-95.

Wehrs J, Mohanty G, Guillonneau G, Taylor AA, Maeder X, Frey D, et al. Comparison of In Situ Micromechanical Strain-Rate Sensitivity Measurement Techniques. JOM 2015; 67:1684-93.

Wheeler J, Armstrong D, Heinz W, Schwaiger R. High temperature nanoindentation: The state of the art and future challenges. Current Opinion in Solid State and Materials Science 2015;19:354-66.

Raghavan R, Wheeler J, Esqué-de los Ojos D, Thomas K, Almandoz E, Fuentes G, et al. Mechanical behavior of Cu/TiN multilayers at ambient and elevated temperatures: Stress-assisted diffusion of Cu. Materials Science and Engineering: A 2015;620:375-82.

Lunt AJ, Mohanty G, Ying S, Dluhoš J, Sui T, Neo TK, et al. A comparative transmission elec-tron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia-porcelain interface in dental prosthesis. Thin Solid Films 2015;596:222-32.

Lunt AJ, Mohanty G, Neo TK, Michler J, Korsunsky AM. Microscale resolution fracture toughness profiling at the zirconia-porcelain interface in dental prostheses.  SPIE Micro+ Nano Materials, Devices, and Applications: International Society for Optics and Photonics; 2015. p. 96685S-S-11.

Lunt AJ, Mohanty G, Ying S, Dluhoš J, Sui T, Neo TK, et al. A comparative transmission elec-tron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia-porcelain interface in dental prosthesis. Thin Solid Films 2015;596:222-32.

 

2014

Wheeler J, Raghavan R, Chawla V, Morstein M, Michler J. Deformation of hard coatings at elevated temperatures. Surface and Coatings Technology 2014;254:382-7.

Soler R, Wheeler JM, Chang H-J, Segurado J, Michler J, Llorca J, et al. Understanding size effects on the strength of single crystals through high-temperature micropillar compression. Acta Materialia 2014;81:50-7.

Schwiedrzik J, Raghavan R, Bürki A, LeNader V, Wolfram U, Michler J, et al. In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nature materials 2014;13:740-7.

 

2013

Wheeler J, Michler J. Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Review of Scientific Instruments 2013;84:045103.

Rabier J, Montagne A, Wheeler J, Demenet J, Michler J, Ghisleni R. Silicon micropillars: high stress plasticity. Phys Status Solidi 2013;10:11-5.

Liu S, Wheeler J, Howie P, Zeng X, Michler J, Clegg W. Measuring the fracture resistance of hard coatings. Applied Physics Letters 2013;102:171907.

 

2012

Wheeler J, Brodard P, Michler J. Elevated temperature, in situ indentation with calibrated contact temperatures. Philosophical Magazine 2012;92:3128-41.

Wheeler J, Raghavan R, Michler J. Temperature invariant flow stress during microcompression of a Zr-based bulk metallic glass. Scripta Materialia 2012;67:125-8.

 

2011

Ghisleni R, Liu J, Raghavan R, Brodard P, Lugstein A, Wasmer K, et al. In situ micro-Raman compression: characterization of plasticity and fracture in GaAs. Philosophical Magazine 2011;91:1286-92.

Wheeler J, Raghavan R, Michler J. In situ SEM indentation of a Zr-based bulk metallic glass at elevated temperatures. Materials Science and Engineering: A 2011;528:8750-6.

 

2008

Wasmer K, Wermelinger T, Bidiville A, Spolenak R, Michler J. In situ compression tests on micron-sized silicon pillars by Raman microscopy—Stress measurements and deformation analysis. Journal of Materials Research 2008;23:3040-7.

Retour en haut